

 Navigation

 	
 index

 	
 modules |

 	multirange 0.3.0 documentation

 multiranges provides functions operating on multiple range-like objects.

multirange

Convenience functions for multiple range-like objects

An elementary package for Python >= 3.3

https://pypi.python.org/pypi/multirange/

Status

The code works, but it is not stable: functionality might be added
or reorganized as long as the major version equals 0
(cf. http://semver.org/spec/v2.0.0.html, item #4).
Hint: Stability grows quicker when you provide feedback.

multirange is not yet feature complete; most operations involving
multiranges are missing.

Introduction

Overview

This library for Python >= 3.3 provides convenience functions for multiple
range-like objects corresponding to finite sets of consecutive integers.

It has 3 main types of operations:

	operations involving few range-like objects (a generalization of Python’s
native range objects)

	operations involving an iterable of range-like objects
(range iterables)

	operations involving so-called multiranges; we define a multirange
as iterables range-like objects, which have no mutual overlap, which
are not adjacent, and which are ordered increasingly.

Features

	Provide operations on multiple instances of range
(disregarding attribute step), or any other object having attributes
start and stop evaluating to int

Note

Since Python 3.3 range objects have the start, stop and
step attributes.

	Avoid materializing of ranges as full lists of integers.
Instead, results are computed from the boundaries (start, stop) only.

	If not otherwise noted, the functions of this module throw no Exceptions,
provided they are called with valid parameters.

Limitations

	Require Python >= 3.3

Range

In the context of this module we define as a range r either a native Python
range object, or any other object having attributes start and
stop, which evaluate to int.

A range r has the meaning of the set of all consecutive integers from r.start
to r.stop - 1. If r.start >= r.stop, this means the empty set.
Note that for negative step values the native Python range object
may generate several values, while in our context an empty set may result.
Example: range(0, -10, -1) generates 10 values, while in our context
(step == 1) this entails an empty set of integers.

Ranges often need to be brought to normal form (cf. normalize()).
By default the normal form is a native range object with step == 1,
or None if r.stop <= r.start. Alternatively, in case r.stop > r.start, the
normal form may be any other generalized range object, which is obtained
using a non-default value of the construct keyword argument in most functions
(see below).

The functions of this module always accept ranges in their normalized form,
and if not otherwise stated, non-normalized ranges are accepted, too.

Two ranges are called adjacent if the end (value of the stop attribute) of
one coincides with the beginning (value of the start attribute) of the other.

Generalized range object

When the documentation of this module refers to a range, it usually means
a generalized range object (or range-like object), not just Python’s
native range.

As generalized range object we define an object which can be constructed
using exactly two integer arguments, start and stop, and which has
attributes start and stop returning these integer values at any time.
One example is the native range object. Here is another very simple
one:

class MyRange(object):
 def __init__(self, start, stop):
 self.start = start
 self.stop = stop

The main advantage of generalized range objects over native range objects is
that they may have additional structure beyond start and stop (where the
native range only has a step attribute).

Range iterable

The purpose of this module is to ease common operations involving
multiple ranges, more precisely, iterables of ranges. By range iterable
we mean an iterable yielding either None or an instance of a generalized
range object.

Warning

Some functions need to sort range iterables, thereby defining
an intermediate list, so don’t expect optimal performance for iterables
with a large number of items for all functions.

Range iterables are not to be confused with multiranges.

Multirange

As multirange we define a range iterable where the ranges don’t
overlap, are not adjacent and are ordered increasingly. A multirange
can be obtained from any range iterable by using normalize_multi().

Usage examples

>>> import multirange as mr
>>> print(mr.normalize(range(5, 0)))
None
>>> mr.overlap(range(0, 10), range(5, 15))
range(5, 10)
>>> mr.is_disjunct([range(8, 10), range(0, 2), range(2, 4)])
True
>>> mr.covering_all([range(8, 10), range(0, 2), range(2, 4)])
range(0, 10)
>>> mr.contains(range(0, 10), range(0, 5))
True
>>> mr.is_covered_by([range(8, 10), range(0, 2)], range(0, 20))
True
>>> mr.intermediate(range(10, 15), range(0, 5))
range(5, 10)
>>> list(mr.gaps([range(4, 6), range(6, 7), range(8, 10), range(0, 3)]))
[range(3, 4), range(7, 8)]
>>> mr.difference(range(1, 9), range(2, 3))
(range(1, 2), range(3, 9))
>>> list(mr.normalize_multi([None, range(0, 5), range(5, 7), range(8, 9)]))
[range(0, 7), range(8, 9)]
>>> list(mr.difference_one_multi(range(0, 9), [range(-2, 2), range(4, 5)]))
[range(2, 4), range(5, 9)]

Please consult the unit tests (latest [https://github.com/iburadempa/multirange/blob/master/tests/test_most.py]) for more examples.

Functions

	
multirange.normalize(r, construct=<class 'range'>)[source]

	Return an object which is the normalization of range r.

The normalized range is either None (if r.start >= r.stop), or an object
constructed using construct with the arguments r.start, r.stop.

In case construct == range we try to avoid constructing new objects.

	
multirange.filter_normalize(rs, construct=<class 'range'>)[source]

	Normalize ranges iteratively.

Iterate over all ranges in the given range iterable rs, yielding
normalized ranges

	
multirange.filter_nonempty(rs, invert=False, do_normalize=True, construct=<class 'range'>, with_position=False)[source]

	Filter for non-empty ranges.

Iterate over all ranges in the given range iterable rs and yield those
which are not None after normalization; if invert is True, yield those
which are None

If do_normalize is True, yield only normalized non-empty ranges
(using the constructor given in construct upon normalization);
otherwise yield the original range objects.

If with_position is True, return 2-tuples consisting of the position of
the matching range within rs and the matching range. Otherwise yield
only the matching range.

	
multirange.equals(r1, r2)[source]

	Check equality of two ranges.

Return whether the the two ranges r1 and r2 are equal after
normalization.

Incidental remark: If you have native range objects (being not None) and
want to take into account step values, you can use native python equality
of ranges; for instance, range(0, 5, -10) == range(0, -5) == range(0).

	
multirange.filter_equal(rs, r, do_normalize=True, construct=<class 'range'>, with_position=False)[source]

	Filter ranges for equality to a given range.

Iterate over all ranges in the given range iterable rs and yield those
which are equal to range r after normalization.

If do_normalize evaluates to True, then do not return the original items
from rs, but instead normalized ranges, where the range objects are
constructed using construct.

If with_position evalues to True, then yield 2-tuples consisting of an
int indicating the position of a matching range within rs and
the range itself.

	
multirange.is_adjacent(r1, r2)[source]

	Check for adjacency of two ranges.

Return whether the ranges r1 and r2 are adjacent.

If r1 or r2 is None after normalization, return None instead of a
bool.

	
multirange.overlap(r1, r2, construct=<class 'range'>)[source]

	Overlap of two ranges.

For two ranges r1 and r2 return the normalized range corresponding to
the intersection ot the sets (of consecutive integers) corresponding to
r1 and r2

Return a normalized result, which is either None, or an object constructed
using construct.

	
multirange.filter_overlap(rs, r, do_normalize=False, construct=<class 'range'>, with_position=False)[source]

	Filter for ranges overlapping with a given range.

Iterate over the range iterable rs, and yield only those ranges
having a non-vanishing overlap with range r.

Note: Some of the original ranges are yielded, not their overlapping parts.

If do_normalize evaluates to True, then do not return the original items
from rs, but instead normalized range objects constructed using
construct.

If with_position evalues to True, then yield 2-tuples consisting of an
int indicating the position of a matching range within rs and
the range itself.

	
multirange.match_count(rs, r)[source]

	Count matches with a gievn range.

Return the number of ranges yielded from iterable rs,
which have a non-vanishing overlap with range r.

	
multirange.overlap_all(rs, construct=<class 'range'>)[source]

	Overlap of all given ranges.

Return the range corresponding to the intersection of the sets of integers
corresponding to the ranges obtained from the iterable rs

Return a normalized result, where the normalized object is constructed
using construct.

	
multirange.is_disjunct(rs, assume_ordered_increasingly=False)[source]

	Check for disjointness of all given ranges.

Return whether the range iterable rs consists of mutually disjunct
ranges.

If assume_ordered_increasingly is True, only direct neighbors (qua
iteration order) are checked for non-vanishing overlap.

	
multirange.covering_all(rs, construct=<class 'range'>)[source]

	Return the smallest covering range for the ranges in range iterable rs.

Return a normalized result, where the normalized object is constructed
using construct.

	
multirange.contains(r1, r2)[source]

	Check inclusion of two ranges.

Return whether range r1 contains range r2.

	
multirange.filter_contained(rs, r, do_normalize=False, construct=<class 'range'>, with_position=False)[source]

	Filter for ranges contained in a given range.

Yield those ranges from range iterable rs, which are contained in range
r.

If do_normalize evaluates to True, then do not return the original items
from rs, but instead normalized range objects constructed using
construct.

If with_position evalues to True, then yield 2-tuples consisting of an
int indicating the position of a matching range within rs and
the range itself.

	
multirange.is_covered_by(rs, r)[source]

	Check inclusion of ranges in a given range.

Return whether range r covers all ranges from range iterable rs.

	
multirange.symmetric_difference(r1, r2, construct=<class 'range'>)[source]

	Symmetric difference of two ranges.

Return the symmetric difference between range r1 and range r2 as two
range-like objects (constructed using construct, and possibly None),
where the first corresponds to a subset or r1 and the second corresponds
to a subset or r2

Instead of ranges, r1 and r2 can also be range-like objects.

Note: The resulting range-like objects correspond to disjunct sets of
integers, but they need not be ordered, if r1 and r2 are not.

	
multirange.intermediate(r1, r2, construct=<class 'range'>, assume_ordered=False)[source]

	Intermediate of two ranges.

Return the range inbetween range r1 and range r2, or None
if they overlap or if at least one of them corresponds to an empty set.

Return a normalized range object constructed using construct.

	
multirange.sort_by_start(rs)[source]

	Sorted list of ranges.

Return a list of (unmodified) ranges obtained from range iterable rs,
sorted by their start values, and omitting empty ranges.

	
multirange.gaps(rs, construct=<class 'range'>, assume_ordered=False)[source]

	Find gaps between ranges.

Yield the gaps between the ranges from range iterable rs, i.e.,
the maximal ranges without overlap with any of the ranges, but within
the covering range.

Yield normalized, non-empty range objects constructed using construct.

	
multirange.is_partition_of(rs, construct=<class 'range'>, assume_ordered=False)[source]

	Check if ranges are a partition.

Return the covering range of the ranges from range iterable rs,
if they have no gaps; else return None.

The covering range is constructed using construct.

	
multirange.difference(r1, r2, construct=<class 'range'>)[source]

	Difference of two ranges.

Return two ranges resulting when the integers from range r2 are
removed from range r1.

Return two ranges: the first being the part below r2 and the second
the one above r2. They may both be None. In the special case where r2
after normalization equals None, return (r1, None) (i.e., take the
difference to be the lower part).

The range-like objects are constructed using construct.

	
multirange.normalize_multi(rs, construct=<class 'range'>, assume_ordered_increasingly=False)[source]

	Return a normalized multirange from the given range iterable rs.

Overlapping or adjacent ranges are merged into one, and the ranges are
ordered increasingly.

Yield normalized ranges. Don’t yield None.

	
multirange.difference_one_multi(r, mr, construct=<class 'range'>)[source]

	Subtract multirange mr from range r, resulting in a multirange.

The range-like objects generated by this function are constructed using
construct.

	
multirange.multi_intersection(mr1, mr2, construct=<class 'range'>)[source]

	Intersection of two multiranges.

Return a multirange consisting of range-like objects which are
intersections of the ranges in multirange mr1 and multirange mr2.

More precisely, the resulting multirange corresponds to the set of integers
which is the intersection of the sets of integers corresponding to mr1
and mr2.

The range-like objects generated by this function are constructed using
construct. (Note: They are newly constructed, even if items from mr1
or mr2 have the required values for the start and stop attributes.)

	
multirange.multi_union(mr1, mr2, construct=<class 'range'>)[source]

	Union of two multiranges.

Return a multirange consisting of range-like objects which are unions
of the ranges in multirange mr1 and multirange mr2

More precisely, the resulting multirange corresponds to the set of integers
which is the union of the sets of integers corresponding to mr1 and
mr2.

The range-like objects generated by this function are constructed using
construct. (Note: They are newly constructed, even if items from mr1
or mr2 have the required values for the start and stop attributes.)

 Copyright 2014, ibu radempa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	multirange 0.3.0 documentation

 Python Module Index

 m

 			

 		
 m	

 	
 	
 multirange	

 Copyright 2014, ibu radempa.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	multirange 0.3.0 documentation

Index

 C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | O
 | S

C

 	

 	contains() (in module multirange)

 	

 	covering_all() (in module multirange)

D

 	

 	difference() (in module multirange)

 	

 	difference_one_multi() (in module multirange)

E

 	

 	equals() (in module multirange)

F

 	

 	filter_contained() (in module multirange)

 	filter_equal() (in module multirange)

 	filter_nonempty() (in module multirange)

 	

 	filter_normalize() (in module multirange)

 	filter_overlap() (in module multirange)

G

 	

 	gaps() (in module multirange)

I

 	

 	intermediate() (in module multirange)

 	is_adjacent() (in module multirange)

 	is_covered_by() (in module multirange)

 	

 	is_disjunct() (in module multirange)

 	is_partition_of() (in module multirange)

M

 	

 	match_count() (in module multirange)

 	multi_intersection() (in module multirange)

 	

 	multi_union() (in module multirange)

 	multirange (module)

N

 	

 	normalize() (in module multirange)

 	

 	normalize_multi() (in module multirange)

O

 	

 	overlap() (in module multirange)

 	

 	overlap_all() (in module multirange)

S

 	

 	sort_by_start() (in module multirange)

 	

 	symmetric_difference() (in module multirange)

 Copyright 2014, ibu radempa.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		
 modules |

 		multirange 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, ibu radempa.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/comment.png

_modules/multirange.html

 Navigation

 		
 index

 		
 modules |

 		multirange 0.3.0 documentation »

 		Module code »

 Source code for multirange

-*- coding: utf-8 -*-

Copyright (C) 2014 ibu@radempa.de
#
Permission is hereby granted, free of charge, to
any person obtaining a copy of this software and
associated documentation files (the "Software"),
to deal in the Software without restriction,
including without limitation the rights to use,
copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is
furnished to do so, subject to the following
conditions:
#
The above copyright notice and this permission
notice shall be included in all copies or
substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""
multiranges provides functions operating on multiple range-like objects.

multirange
==========
Convenience functions for multiple range-like objects

An elementary package for Python >= 3.3

https://pypi.python.org/pypi/multirange/

Status

The code works, but it is not stable: functionality might be added
or reorganized as long as the major version equals 0
(cf. http://semver.org/spec/v2.0.0.html, item #4).
Hint: Stability grows quicker when you provide feedback.

multirange is not yet feature complete; most operations involving
multiranges are missing.

Introduction

Overview
~~~~~~~~
This library for Python >= 3.3 provides convenience functions for multiple
range-like objects corresponding to finite sets of consecutive integers.

It has 3 main types of operations:

    * operations involving few range-like objects (a generalization of Python's
      native range objects)
    * operations involving an iterable of range-like objects
      (*range iterables*)
    * operations involving so-called multiranges; we define a *multirange*
      as iterables range-like objects, which have no mutual overlap, which
      are not adjacent, and which are ordered increasingly.

Features
~~~~~~~~
 * Provide operations on multiple instances of *range*
 (disregarding attribute *step*), or any other object having attributes
 start and *stop* evaluating to :py:obj:`int`

 .. note::

 Since Python 3.3 :py:obj:`range` objects have the *start*, *stop* and
 step attributes.

 * Avoid materializing of ranges as full lists of integers.
 Instead, results are computed from the boundaries (start, stop) only.

 * If not otherwise noted, the functions of this module throw no Exceptions,
 provided they are called with valid parameters.

Limitations
~~~~~~~~~~~
    * Require Python >= 3.3

Range
~~~~~
In the context of this module we define as a *range* *r* either a native Python
:py:obj:`range` object, or any other object having attributes *start* and
stop, which evaluate to :py:obj:`int`.

A range *r* has the meaning of the set of all consecutive integers from r.start
to r.stop - 1. If r.start >= r.stop, this means the empty set.
Note that for negative step values the native Python :py:obj:`range` object
may generate several values, while in our context an empty set may result.
Example: range(0, -10, -1) generates 10 values, while in our context
(step == 1) this entails an empty set of integers.

Ranges often need to be brought to normal form (cf. :func:`normalize`).
By default the normal form is a native :py:obj:`range` object with step == 1,
or None if r.stop <= r.start. Alternatively, in case r.stop > r.start, the
normal form may be any other *generalized range object*, which is obtained
using a non-default value of the *construct* keyword argument in most functions
(see below).

The functions of this module always accept ranges in their normalized form,
and if not otherwise stated, non-normalized ranges are accepted, too.

Two ranges are called *adjacent* if the end (value of the stop attribute) of
one coincides with the beginning (value of the start attribute) of the other.

Generalized range object
~~~~~~~~~~~~~~~~~~~~~~~~
When the documentation of this module refers to a *range*, it usually means
a *generalized range object* (or *range-like object*), not just Python's
native :py:obj:`range`.

As *generalized range object* we define an object which can be constructed
using exactly two integer arguments, *start* and *stop*, and which has
attributes *start* and *stop* returning these integer values at any time.
One example is the native :py:obj:`range` object. Here is another very simple
one::

    class MyRange(object):
        def __init__(self, start, stop):
            self.start = start
            self.stop = stop

The main advantage of generalized range objects over native range objects is
that they may have additional structure beyond *start* and *stop* (where the
native range only has a *step* attribute).

Range iterable
~~~~~~~~~~~~~~
The purpose of this module is to ease common operations involving
multiple ranges, more precisely, iterables of ranges. By *range iterable*
we mean an iterable yielding either None or an instance of a generalized
range object.

.. warning::

 Some functions need to sort range iterables, thereby defining
 an intermediate list, so don't expect optimal performance for iterables
 with a large number of items for all functions.

Range iterables are not to be confused with multiranges.

Multirange
~~~~~~~~~~
As *multirange* we define a range iterable where the ranges don't
overlap, are not adjacent and are ordered increasingly. A *multirange*
can be obtained from any *range iterable* by using :func:`normalize_multi`.

Usage examples
--------------
    >>> import multirange as mr
    >>> print(mr.normalize(range(5, 0)))
    None
    >>> mr.overlap(range(0, 10), range(5, 15))
    range(5, 10)
    >>> mr.is_disjunct([range(8, 10), range(0, 2), range(2, 4)])
    True
    >>> mr.covering_all([range(8, 10), range(0, 2), range(2, 4)])
    range(0, 10)
    >>> mr.contains(range(0, 10), range(0, 5))
    True
    >>> mr.is_covered_by([range(8, 10), range(0, 2)], range(0, 20))
    True
    >>> mr.intermediate(range(10, 15), range(0, 5))
    range(5, 10)
    >>> list(mr.gaps([range(4, 6), range(6, 7), range(8, 10), range(0, 3)]))
    [range(3, 4), range(7, 8)]
    >>> mr.difference(range(1, 9), range(2, 3))
    (range(1, 2), range(3, 9))
    >>> list(mr.normalize_multi([None, range(0, 5), range(5, 7), range(8, 9)]))
    [range(0, 7), range(8, 9)]
    >>> list(mr.difference_one_multi(range(0, 9), [range(-2, 2), range(4, 5)]))
    [range(2, 4), range(5, 9)]

Please consult the unit tests (latest_) for more examples.

.. _latest:
    https://github.com/iburadempa/multirange/blob/master/tests/test_most.py


Functions
---------
"""

__version__ = (0, 3, 0)


[docs]def normalize(r, construct=range):
    """
    Return an object which is the normalization of range *r*.

    The normalized range is either None (if r.start >= r.stop), or an object
    constructed using *construct* with the arguments r.start, r.stop.

    In case construct == range we try to avoid constructing new objects.
    """
    if r is None:
        return None
    if r.stop <= r.start:
        return None
    else:
        if construct == range and isinstance(r, range) and r.step == 1:
            return r
        else:
            return construct(r.start, r.stop)



[docs]def filter_normalize(rs, construct=range):
    """
    Normalize ranges iteratively.

    Iterate over all ranges in the given range iterable *rs*, yielding
    normalized ranges
    """
    for r in rs:
        yield normalize(r, construct=construct)



[docs]def filter_nonempty(rs, invert=False, do_normalize=True, construct=range,
                    with_position=False):
    """
    Filter for non-empty ranges.

    Iterate over all ranges in the given range iterable *rs* and yield those
    which are not None after normalization; if *invert* is True, yield those
    which are None

    If *do_normalize* is True, yield only normalized non-empty ranges
    (using the constructor given in *construct* upon normalization);
    otherwise yield the original range objects.

    If with_position is True, return 2-tuples consisting of the position of
    the matching range within *rs* and the matching range. Otherwise yield
    only the matching range.
    """
    for pos, r in enumerate(rs):
        n = normalize(r, construct=construct)
        if (not invert and n is not None) or (invert and n is None):
            if do_normalize:
                if with_position:
                    yield pos, n
                else:
                    yield n
            else:
                if with_position:
                    yield pos, r
                else:
                    yield r



[docs]def equals(r1, r2):
    """
    Check equality of two ranges.

    Return whether the the two ranges *r1* and *r2* are equal after
    normalization.

    Incidental remark: If you have native range objects (being not None) and
    want to take into account step values, you can use native python equality
    of ranges; for instance, range(0, 5, -10) == range(0, -5) == range(0).
    """
    n1 = normalize(r1)
    n2 = normalize(r2)
    if n1 is None:
        return n2 is None
    return n1 == n2



[docs]def filter_equal(rs, r, do_normalize=True, construct=range,
                 with_position=False):
    """
    Filter ranges for equality to a given range.

    Iterate over all ranges in the given range iterable *rs* and yield those
    which are equal to range *r* after normalization.

    If *do_normalize* evaluates to True, then do not return the original items
    from *rs*, but instead normalized ranges, where the range objects are
    constructed using *construct*.

    If *with_position* evalues to True, then yield 2-tuples consisting of an
    :py:obj:`int` indicating the position of a matching range within *rs* and
    the range itself.
    """
    n = normalize(r)
    for pos, r1 in enumerate(rs):
        n1 = normalize(r1, construct=construct)
        if (n1 is None and n is None) or \
           (n1 is not None and n is not None and
           n1.start == n.start and n1.stop == n.stop):
            if with_position:
                yield pos, (n1 if do_normalize else r1)
            else:
                yield (n1 if do_normalize else r1)



[docs]def is_adjacent(r1, r2):
    """
    Check for adjacency of two ranges.

    Return whether the ranges *r1* and *r2* are adjacent.

    If *r1* or *r2* is None after normalization, return None instead of a
    :py:obj:`bool`.
    """
    n1 = normalize(r1)
    if n1 is None:
        return None
    n2 = normalize(r2)
    if n2 is None:
        return None
    l1, m1 = n1.start, n1.stop
    l2, m2 = n2.start, n2.stop
    return l1 == m2 or l2 == m1



[docs]def overlap(r1, r2, construct=range):
    """
    Overlap of two ranges.

    For two ranges *r1* and *r2* return the normalized range corresponding to
    the intersection ot the sets (of consecutive integers) corresponding to
    *r1* and *r2*

    Return a normalized result, which is either None, or an object constructed
    using *construct*.
    """
    if r1 is None or r1.stop <= r1.start:
        return None
    if r2 is None or r2.stop <= r2.start:
        return None
    if r1.stop <= r2.start or r2.stop <= r1.start:
        return None
    return construct(max(r1.start, r2.start), min(r1.stop, r2.stop))



[docs]def filter_overlap(rs, r, do_normalize=False, construct=range,
                   with_position=False):
    """
    Filter for ranges overlapping with a given range.

    Iterate over the range iterable *rs*, and yield only those ranges
    having a non-vanishing overlap with range *r*.

    Note: Some of the original ranges are yielded, not their overlapping parts.

    If *do_normalize* evaluates to True, then do not return the original items
    from *rs*, but instead normalized range objects constructed using
    *construct*.

    If *with_position* evalues to True, then yield 2-tuples consisting of an
    :py:obj:`int` indicating the position of a matching range within *rs* and
    the range itself.
    """
    for pos, r1 in enumerate(rs):
        if overlap(r1, r) is not None:
            if with_position:
                yield pos, (normalize(r1, construct=construct)
                            if do_normalize else r1)
            else:
                yield (normalize(r1, construct=construct)
                       if do_normalize else r1)



[docs]def match_count(rs, r):
    """
    Count matches with a gievn range.

    Return the number of ranges yielded from iterable *rs*,
    which have a non-vanishing overlap with range *r*.
    """
    n = 0
    for r2 in rs:
        if overlap(r, r2):
            n += 1
    return n



[docs]def overlap_all(rs, construct=range):
    """
    Overlap of all given ranges.

    Return the range corresponding to the intersection of the sets of integers
    corresponding to the ranges obtained from the iterable *rs*

    Return a normalized result, where the normalized object is constructed
    using *construct*.
    """
    brk = False
    o = None
    for r in rs:
        if brk is False:
            o = normalize(r)
            brk = True
        else:
            if o is None:
                return None
            o = overlap(o, r)
    return normalize(o, construct=construct)



[docs]def is_disjunct(rs, assume_ordered_increasingly=False):
    """
    Check for disjointness of all given ranges.

    Return whether the range iterable *rs* consists of mutually disjunct
    ranges.

    If *assume_ordered_increasingly* is True, only direct neighbors (qua
    iteration order) are checked for non-vanishing overlap.
    """
    if not assume_ordered_increasingly:
        rs = sorted(filter_nonempty(rs), key=lambda x: x.start)
    left = None
    for right in rs:
        if left is not None and overlap(left, right):
            return False
        left = right
    return True



[docs]def covering_all(rs, construct=range):
    """
    Return the smallest covering range for the ranges in range iterable *rs*.

    Return a normalized result, where the normalized object is constructed
    using *construct*.
    """
    l_c = None
    m_c = None
    for s in rs:
        s1 = normalize(s)
        if s1 is not None:
            if l_c is not None:
                l, m = s1.start, s1.stop
                l_c = min(l_c, l)
                m_c = max(m_c, m)
            else:
                l_c, m_c = s1.start, s1.stop
    if l_c is None:
        return None
    return construct(l_c, m_c)



[docs]def contains(r1, r2):
    """
    Check inclusion of two ranges.

    Return whether range *r1* contains range *r2*.
    """
    n1 = normalize(r1)
    n2 = normalize(r2)
    if n2 is None:
        return True
    if n1 is None:
        return False  # n2 is not None
    return n1.start <= n2.start and n2.stop <= n1.stop



[docs]def filter_contained(rs, r, do_normalize=False, construct=range,
                     with_position=False):
    """
    Filter for ranges contained in a given range.

    Yield those ranges from range iterable *rs*, which are contained in range
    *r*.

    If *do_normalize* evaluates to True, then do not return the original items
    from *rs*, but instead normalized range objects constructed using
    *construct*.

    If *with_position* evalues to True, then yield 2-tuples consisting of an
    :py:obj:`int` indicating the position of a matching range within *rs* and
    the range itself.
    """
    for pos, r1 in enumerate(rs):
        if contains(r, r1):
            if with_position:
                yield pos, (normalize(r1, construct=construct)
                            if do_normalize else r1)
            else:
                yield (normalize(r1, construct=construct)
                       if do_normalize else r1)



[docs]def is_covered_by(rs, r):
    """
    Check inclusion of ranges in a given range.

    Return whether range *r* covers all ranges from range iterable *rs*.
    """
    cov = covering_all(rs)
    return contains(r, cov)



[docs]def symmetric_difference(r1, r2, construct=range):
    """
    Symmetric difference of two ranges.

    Return the symmetric difference between range *r1* and range *r2* as two
    range-like objects (constructed using *construct*, and possibly None),
    where the first corresponds to a subset or *r1* and the second corresponds
    to a subset or *r2*

    Instead of ranges, *r1* and *r2* can also be range-like objects.

    Note: The resulting range-like objects correspond to disjunct sets of
    integers, but they need not be ordered, if *r1* and *r2* are not.
    """
    n1 = normalize(r1, construct=construct)
    n2 = normalize(r2, construct=construct)
    if n1 is None:
        return None, n2
    if n2 is None:
        return n1, None
    l1, m1 = n1.start, n1.stop
    l2, m2 = n2.start, n2.stop
    if m1 <= l2:
        return n1, n2
    if m2 <= l1:
        return n1, n2
    if l2 < m1:
        return (construct(l1, l2) if l1 < l2 else None,
                construct(m1, m2) if m1 < m2 else None)
    else:  # l1 < m2
        return (construct(m2, m1) if m2 < m1 else None,
                construct(l2, l1) if l2 < l1 else None)



[docs]def intermediate(r1, r2, construct=range, assume_ordered=False):
    """
    Intermediate of two ranges.

    Return the range inbetween range *r1* and range *r2*, or None
    if they overlap or if at least one of them corresponds to an empty set.

    Return a normalized range object constructed using *construct*.
    """
    n1 = normalize(r1)
    n2 = normalize(r2)
    if n1 is None:
        return None
    if n2 is None:
        return None
    l1, m1 = n1.start, n1.stop
    l2, m2 = n2.start, n2.stop
    if m1 < l2:
        return construct(m1, l2)
    if not assume_ordered and m2 < l1:
        return construct(m2, l1)
    return None



[docs]def sort_by_start(rs):
    """
    Sorted list of ranges.

    Return a list of (unmodified) ranges obtained from range iterable *rs*,
    sorted by their start values, and omitting empty ranges.
    """
    rs = [s for s in rs if normalize(s) is not None]
    return sorted(rs, key=lambda x: x.start)



[docs]def gaps(rs, construct=range, assume_ordered=False):
    """
    Find gaps between ranges.

    Yield the gaps between the ranges from range iterable *rs*, i.e.,
    the maximal ranges without overlap with any of the ranges, but within
    the covering range.

    Yield normalized, non-empty range objects constructed using *construct*.
    """
    if not assume_ordered:
        rs = sort_by_start(rs)
    l = None  # last seen lower end
    m = None  # maximum of upper end within the set of ranges with lower end l
    for r_next in rs:
        r_next = normalize(r_next)
        if r_next is not None:
            # print((l, m), r_next)
            if l is not None:
                im = intermediate(range(l, m), r_next, construct=construct)
                if im is not None:
                    yield im
                l1, m1 = r_next.start, r_next.stop
                if l == l1:
                    m = max(m, m1)
                else:
                    l = l1
                    m = m1
            else:
                l, m = r_next.start, r_next.stop



[docs]def is_partition_of(rs, construct=range, assume_ordered=False):
    """
    Check if ranges are a partition.

    Return the covering range of the ranges from range iterable *rs*,
    if they have no gaps; else return None.

    The covering range is constructed using *construct*.
    """
    for s in gaps(rs, assume_ordered=assume_ordered):
        if s is not None:
            return None
    return covering_all(rs, construct=construct)



[docs]def difference(r1, r2, construct=range):
    """
    Difference of two ranges.

    Return two ranges resulting when the integers from range *r2* are
    removed from range *r1*.

    Return two ranges: the first being the part below *r2* and the second
    the one above *r2*. They may both be None. In the special case where *r2*
    after normalization equals None, return (r1, None) (i.e., take the
    difference to be the lower part).

    The range-like objects are constructed using *construct*.
    """
    n1 = normalize(r1)
    n2 = normalize(r2)
    if n1 is None:
        return None, None
    if n2 is None:
        return r1, None
    m1, l1 = r1.start, r1.stop
    m2, l2 = r2.start, r2.stop
    if m1 < m2:
        below = construct(m1, min(l1, m2))
    else:
        below = None
    if l2 < l1:
        above = construct(max(m1, l2), l1)
    else:
        above = None
    return below, above



[docs]def normalize_multi(rs, construct=range, assume_ordered_increasingly=False):
    """
    Return a *normalized* multirange from the given range iterable *rs*.

    Overlapping or adjacent ranges are merged into one, and the ranges are
    ordered increasingly.

    Yield normalized ranges. Don't yield None.
    """
    if not assume_ordered_increasingly:
        rs = sorted(filter_nonempty(rs), key=lambda x: x.start)
    l = None     # last seen lower end of the range to be emitted
    m = None     # upper end of the current group of overlapping ranges
    last = None  # last seen range
    for r_next in filter_nonempty(rs):
        if l is not None:
            l1, m1 = r_next.start, r_next.stop
            if l1 > m:
                yield construct(l, m)
                l, m = l1, m1  # for the next iteration
                last = r_next  # if there is no next iteration
            else:
                m = max(m, m1)          # for the next iteration
                last = construct(l, m)  # if there is no next iteration
        else:
            l, m = r_next.start, r_next.stop
            last = construct(l, m)
    if last is not None:
        yield last



[docs]def difference_one_multi(r, mr, construct=range):
    """
    Subtract multirange *mr* from range *r*, resulting in a multirange.

    The range-like objects generated by this function are constructed using
    *construct*.
    """
    n = normalize(r)
    if n is None:
        return
    l = n.start
    m = n.stop
    i = l
    for r1 in mr:
        if r1.start <= l:
            i = max(l, r1.stop)
            continue
        if r1.start >= m:
            yield construct(i, m)
            return
        yield construct(i, r1.start)
        i = r1.stop
    if i < m:
        yield construct(i, m)



[docs]def multi_intersection(mr1, mr2, construct=range):
    """
    Intersection of two multiranges.

    Return a multirange consisting of range-like objects which are
    intersections of the ranges in multirange *mr1* and multirange *mr2*.

    More precisely, the resulting multirange corresponds to the set of integers
    which is the intersection of the sets of integers corresponding to *mr1*
    and *mr2*.

    The range-like objects generated by this function are constructed using
    *construct*. (Note: They are newly constructed, even if items from *mr1*
    or *mr2* have the required values for the *start* and *stop* attributes.)
    """
    it1 = iter(mr1)
    it2 = iter(mr2)
    try:
        r1 = next(it1)
        i1 = r1.start
        f1 = r1.stop
        r2 = next(it2)
        i2 = r2.start
        f2 = r2.stop
    except StopIteration:
        return
    while True:
        if f1 <= i2:
            try:
                r1 = next(it1)
                i1 = r1.start
                f1 = r1.stop
            except StopIteration:
                return
        elif f2 <= i1:
            try:
                r2 = next(it2)
                i2 = r2.start
                f2 = r2.stop
            except StopIteration:
                return
        else:
            i_c = max(i1, i2)
            f_c = min(f1, f2)
            yield construct(i_c, f_c)
            if f2 < f1:
                try:
                    r2 = next(it2)
                    i2 = r2.start
                    f2 = r2.stop
                except StopIteration:
                    return
            else:
                try:
                    r1 = next(it1)
                    i1 = r1.start
                    f1 = r1.stop
                except StopIteration:
                    return



[docs]def multi_union(mr1, mr2, construct=range):
    """
    Union of two multiranges.

    Return a multirange consisting of range-like objects which are unions
    of the ranges in multirange *mr1* and multirange *mr2*

    More precisely, the resulting multirange corresponds to the set of integers
    which is the union of the sets of integers corresponding to *mr1* and
    *mr2*.

    The range-like objects generated by this function are constructed using
    *construct*. (Note: They are newly constructed, even if items from *mr1*
    or *mr2* have the required values for the *start* and *stop* attributes.)
    """
    it1 = iter(mr1)
    it2 = iter(mr2)
    r1 = r2 = None
    i = None
    while True:
        # at this point a) if i is None, both r1, r2 are None, and all results
        # from ranges found so far have been yielded, or b) if i is not None,
        # one or r1, r2 is not None (say r1) and the other is None, and the
        # ranges encountered so far have been processed, but a range (i, f)
        # has not been yieleded yet, because it might be continued by the next
        # found range(s) (in an alternating 1-2-sequence)
        if r1 is None:
            # get range from mr1 or finish with ranges from mr2
            try:
                r1 = next(it1)
                i1 = r1.start
                f1 = r1.stop
            except StopIteration:
                if i is not None:  # result from last loop iteration
                    yield construct(i, f)
                while True:
                    try:
                        r2 = next(it2)
                        yield construct(r2.start, r2.stop)
                    except StopIteration:
                        return
        if r2 is None:
            # get range mr2 or finish with r1 and the remaining ranges from mr1
            try:
                r2 = next(it2)
                i2 = r2.start
                f2 = r2.stop
            except StopIteration:
                if i is not None:  # result from last loop iteration
                    yield construct(i, f)
                else:
                    # next(it1) above was executed and had a result
                    yield construct(r1.start, r1.stop)
                while True:
                    try:
                        r1 = next(it1)
                        yield construct(r1.start, r1.stop)
                    except StopIteration:
                        return
        if i is None:  # no continuity: start a new result range
            i = min(i1, i2)
        if f1 < i2:  # no continuity: yield one, memorize the other in (i, f)
            yield construct(i, f1)
            r1 = None
            i = i2
            f = f2
        elif f2 < i1:  # no continuity: yield one, memorize the other in (i, f)
            yield construct(i, f2)
            r2 = None
            i = i1
            f = f1
        else:
            f = max(f1, f2)
            if f1 == f2:  # both ranges end: no continuity, clear r1 and r2
                yield construct(i, f)
                r1 = r2 = None
                i = None
            elif f1 < f2:
                f = f2
                r1 = None
            else:  # f2 < f1
                f = f1
                r2 = None






          

      

      

    


    
        © Copyright 2014, ibu radempa.
      Created using Sphinx 1.3.1.
    

  

_static/comment-bright.png





_static/up.png





_static/ajax-loader.gif





_static/down.png





_static/plus.png





_static/file.png





_static/minus.png





_modules/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		multirange 0.3.0 documentation »

 
      


    


    
      
          
            
  All modules for which code is available


		multirange






          

      

      

    


    
        © Copyright 2014, ibu radempa.
      Created using Sphinx 1.3.1.
    

  

_static/down-pressed.png





_static/comment-close.png





